
August 27, 2004

Brian Gilman
Cold Spring Harbor Labs/Panther Informatics

Life Sciences Identifier (LSID):
A Foundation for Wide Area,
Scientific Collaboration and
Informatics Interoperability

Life Sciences Identifier (LSID):
A Foundation for Wide Area,
Scientific Collaboration and
Informatics Interoperability

Contents
• Background

• Acknowledgements
• The Big Ideas
• Scientific Complexity and Informatics Interoperability
• LSID Use Cases
• LSID Requirements

• How LSID Works
• Identifier Format and Semantics
• LSID and other Identity Standards

• Conclusions
• LSID Standard Submission Status
• Q & A

Acknowledgements
• LSID Fellow Authors:

• Ted Liefeld, Millennium Pharmaceuticals
• Brian Gilman, The Whitehead Institute/Panther Informatics
• Stephanos Bacon, Avaki Corporation
• Josh Apgar, Avaki Corporation
• Sean Marin, IBM Corporation

Life Sciences Identifier – The Big
Ideas

• LSID is an naming standard for distributed data,
specifically:
• Biologically significant data items,
• Located in distributed data stores,
• Including files, database records, and data objects managed by

N-tier applications,
• That are accessible over public and/or private networks,
• And owned, managed, and/or curated by different academic,

research, government or commercial organizations.
• LSID names are semantically void/opaque with respect

to the objects they identify.
• LSID replaces physical addresses with opaque, location

independent identifiers expressed as URNs.
• LSID complements Web services standards such as

SOAP/XML, WSDL, UDDI, SAML, WS-Security, MS
Passport, Liberty Alliance, GSS-API and OGSA.

Complexity Requires
Interoperability

Genomics Proteomics

Pathways:
Regulation,
Signaling,
Transport

Scientific Exploration

Informatics Infrastructure

Data silos Ontologies and Data Networks

Multi-Discipline, Multi-Organizational Complexity

Collaboration

Building a Foundation
for Ontologies and Data Networks,

….one step at a time
• I3C Technical Architecture Group Manifesto

• Identify representative use cases that anticipate the expressiveness
needed to implement ontologies and data networks, while solving
mainstream, practical informatics interoperability problems with
demonstrable, short term, return on investment.

• Continuously validate new tools and standards proposals with I3C
discovery groups, such as I3C Pathways.

• Test proposed standards by implementing prototypes that demonstrate
real world use cases and rapidly iterate proposals.

• Don’t reinvent the wheel. Harness existing or emerging industry
standards.

• Drive mainstream adoption of enabling technology that is narrowly
defined and easy to adopt throughout the life sciences community.

LSID Use Cases
• Intranet Portal & Uniform Data Naming

Problem: Researchers need a common way to access internal
databases, file systems, or n-tier applications using a standard
web-based interface that let’s them bookmark and refer back to
many different types of data items like sequences, proteins,
enzymes, bases, 3-D structures, etc.

• Development of a portal or new application is difficult because each
internal data silo or application uses a different naming scheme to
identify biological data items.

• Wide Area Data Distribution & Data Currency
Problem: A company obtains data from hundreds of public and
private sources and wants to make it available to remote
satellite offices so that all researchers always have the most up-
to-date data. Today, all external data feeds or deliveries are
received at their central office. Remote administrators
periodically check a central FTP site to see if new data updates
are available, but frequently fall behind.

• This causes unexplainable variances in the results generated by
different research groups and rework.

• Research results based on out-of-date data are not as high quality
as they can be, potentially lengthening the discovery process.

Intranet Portals and the need
for Uniform Naming

Case: if item is in SecretSeqs:
handle = getSecretSeqs(item);

if item is in GB:
handle = getGB(item);

if item is in LocusLink:
handle = getLocusLink(item);

and so on……

Secret
Seqs

GB LocusLink Our
Proteins

Partner
Data

Multi-site, Independent Files Systems, Relational Database, and
N-Tier applications.

My
Discovery

Portal

My bookmarks

Wide Area Data Distribution
and Data Currency

Wide Area Data Distribution
and Data Currency

Company
Headquarters:
Cambridge, US

Satellite
Office: Basel

Satellite
Office: Raleigh

Satellite
Office: La Jolla

Public
Data

Subscription
Data

Collaborator
Data

Ad Hoc
Copy/Updates

Ad Hoc
Copy/Updates

LSID Requirements

1. Scalability: LSID must scale to a very large number of items distributed across
public or private wide area networks.

2. Multiple organizations: Biologically significant data objects named with LSID
may be managed, owned and/or curated by multiple organizations. These
organizations may by geographically separated.

3. Location Independence: Over time, a data item named with LSID may be
migrated to a different network address, a different computer or a different
administrative domain. This should not impact applications that refer to this
data item.

4. Persistent names: The LSID name for a data item must be immutable and not
change for the lifetime of that data item. The lifetime may include events such
as data item migration, data store partitioning or network restructuring.

5. Replication and caching: For performance reasons, it must be possible to
replicate or cache data items named with LSID.

6. Transparency: LSID names must be robust and transparent with respect to
data item replication, migration and failure.

7. Rebind: LSID bindings can become stale, if the physical endpoint of an LSID
changes. It must be possible to rebind an LSID.

8. Extensibility: LSID names must be extensible to support future revisions of the
standard. Newer implementations of LSID must be able to resolve legacy
name.

LSID Identifier Format

• An LSID is represented as a Uniform Resource
Name (URN) with the following format.
• URN:LSID:<Authority>:<Namespace>:<ObjectID>:<Versio

n>

• Examples:
• URN:LSID:ebi.ac.uk:SWISS-PROT/accession:P34355:3
• URN:LSID:rcsb.org:PDB:1D4X:22
• URN:LSID:ncbi.nlm.nih.gov:GenBank/accession:NT_0010

63:2

LSID Field Definitions

• <Authority>
• The name of the organization that has defined the entity.

• <Namespace>
• One or more statements that constrain the scope in

which this identifier is evaluated.
• <ObjectID>

• An alphanumeric sequence that uniquely defines this
object within this namespace, as defined by the authority.

• <Version>
• An optional field containing a unique integer that

represents the version of the ObjectID. By convention,
higher version numbers are more recent than lower
version numbers.

URNs Provide Location
Independence and Persistence

• LSID are encoded as a Universal Resource Names
(URNs).

• A URN is an Internet resource with a name that has
persistent significance and location independence.
• The user of the URN can expect that someone else (or a

program) will be able to find the resource.
• The exact location of the Internet resource may change from

time to time.
• In contrast, Universal Resource Identifiers (URIs) are

used to name specific endpoints.
• URIs are not persistent or location independent.

Identifier Semantics

• LSIDs are opaque identifiers that are designed
to be used by programs not people.
• “The human mind seems to rebel at opaque

identifiers, but they are necessary for creating
reliable systems.”

- Brian King, Sun Microsystems

• User code should not infer semantic meaning
about the objects that an LSID identifies.

• There is no way to add fields to the identifier.

LSID Use Cases Revisited
• Intranet Portal and Uniform Naming

• LSID eliminates the need for ‘case statement’ conversion of multiple naming
formats.

• Simplifies portal integration, and more broadly point to point data silo
integration in discovery pipelines.

• Uniform naming format enables more complex models and ontologies,
where data components and relationship definitions are physically remote or
distributed.

• Wide Area, Data Distribution and Data Currency
• Ensures that current data is available at all remote locations, on-demand.
• Researchers always have the latest, best quality data sets.
• Remote caches or replicas can determine which data items are out of date

and update them automatically, in advance or on demand.
• Version numbering facilitates reproducibility of experimental results.
• Simplifies multi-organizational data sharing.

How LSID Relates to other
Identity Standards

• Two types of identity
• User identity, authentication, and privacy

• Liberty Alliance
• SAML
• Microsoft Passport
• GSS-API

• Data identity
• LSID (derived from SGNP)
• SGNP (Secure Grid Name Protocol) submitted by Avaki to the

OGSA (Open Grid Services Architecture) sponsored by IBM
and Globus, within the GGF (Global Grid Foundation).

• OIDs used in LDAP/ASN.1 based systems (compact &
hierarchical)

Conclusion:
Life Sciences Identifier – The Big

Ideas
• LSID is an naming standard for distributed data,

specifically:
• Biologically significant data items,
• Located in distributed data stores,
• Including files, database records, and data objects managed by

N-tier applications,
• That are accessible over public and/or private networks,
• And owned, managed, and/or curated by different academic,

research, government or commercial organizations.
• LSID names are semantically void/opaque with respect

to the objects they identify.
• LSID replaces physical addresses with opaque, location

independent identifiers expressed as URNs.
• LSID complements Web services standards such as

SOAP/XML, WSDL, UDDI, SAML, WS-Security, MS
Passport, Liberty Alliance, GSS-API and OGSA.

LSID Standard Submission
Status

• September, 2002: Submission of LSID specification to I3C Board of
Directors for standardization vote.

• October 2004: Submitted to OMG through their standardization pipeline
• Today: Submitted and approved by OMG with implementations in Java,

Perl, and C++

